ПАРНІСТЬ ТА НЕПАРНІСТЬ


Означення. Будь-яке число, яке можна подати, як суму двох однакових натуральних чисел, називають парним.
Парні числа позначають формулою m = 2n.
Парних чисел безліч.
Парні числа, закінчуються на цифри: 0, 2, 4, 6, 8.
Приклади. Такі числа є парними: 2, 4, 6, 8, 56,  78, 40.
Означення. Будь-яке число, яке не можна подати, як суму двох однакових натуральних чисел, називають непарним.
Непарні числа позначають формулою m = 2n - 1.
Приклади. Такі числа є непарними: 21, 43, 65, 87, 56,  781, 409.
Непарних чисел безліч.
Непарні числа, закінчуються на цифри: 1, 3, 5, 7, 9.

Варто звернути увагу на те, що сума парної кількості непарних чисел є парною.
Узагальнення цього факту виглядає так:
парність суми кількох чисел залежить лише від парності числа непарних доданків:
якщо кількість непарних доданків є (не)парна, то і сума також є (не)парною.
Це можна зрозуміти з таких властивостей парності:

  2∙n + 2∙k + … + 2∙f + 2∙q = 2∙(n + k + … + f  + q) = 2∙m
СУМА БУДЬ-ЯКОЇ КІЛЬКОСТІ ПАРНИХ ЧИСЕЛ ЗАВЖДИ ПАРНА.

2∙n – 2∙k – … – 2∙f – 2∙q = 2∙(n – k – … – f  – q) = 2∙m
РІЗНИЦЯ БУДЬ-ЯКОЇ КІЛЬКОСТІ ПАРНИХ ЧИСЕЛ ЗАВЖДИ ПАРНА.

(2∙n -1)+ (2∙k-1)+ … + (2∙f-1) + (2∙q-1) = 2∙(n + k + … + f  + q)- 2s = 2∙(m-s)
СУМА ПАРНОЇ КІЛЬКОСТІ НЕПАРНИХ ЧИСЕЛ ЗАВЖДИ ПАРНА.

(2∙n -1)+ (2∙k-1)+ … + (2∙f-1) + (2∙q-1) = 2∙(n + k + … + f  + q)- 2s -1 = 2∙(m-s) - 1
СУМА НЕПАРНОЇ КІЛЬКОСТІ НЕПАРНИХ ЧИСЕЛ ЗАВЖДИ НЕПАРНА.

Таким чином, парність результату не залежить від розстановки плюсів і мінусів між цілими числами, а залежить тільки від кількості непарних чисел в початковому наборі. Зрозуміло, що сума будь-якої кількості парних чисел є  завжди парним числом.

Звертаємо увагу ще на  одну цікаву властивість.
Сума  квадратів парної кількості непарних чисел є парною.
(2∙n -1)2 + (2∙k-1)2 + … + (2∙f-1)2 + (2∙q-1)2 = 2∙p
                               (парна кількість непарних доданків)

Сума  квадратів непарної кількості непарних чисел є парною.
(2∙n -1)2 + (2∙k-1)2 + … + (2∙f-1)2 + (2∙q-1)2 = 2∙p – 1
                               (непарна кількість непарних доданків)
Зокрема, сума двох квадратів натуральних чисел  може при ділені на 4 мати остачу  0, 1, 2, але не може мати остачу 3.
Приклади:  12 + 22  = 4 + 1,    12 + 32  = 4∙2 + 2,    22 + 22  = 4∙2 + 0.
Варто запам’ятати, що  n2 + k2 ¹ 4∙m + 3.
Узагальнення попередніх фактів виглядає так:
Парність суми  довільних натуральних  степенів кількох чисел залежить лише від парності числа непарних доданків:
якщо кількість непарних доданків є (не)парна, то і сума також є (не)парною.
Це можна зрозуміти з таких властивостей парності:
(2∙n)z + (2∙k)n + … + (2∙f )s + (2∙q)t = 2∙p
(будь-яка кількість  доданків)
СУМА cтепенів БУДЬ-ЯКОЇ КІЛЬКОСТІ ПАРНИХ ЧИСЕЛ ЗАВЖДИ ПАРНА.
(2∙n)z  -  (2∙k)n  -  … - (2∙f )s  - (2∙q)t = 2∙p
                                       (будь-яка кількість  доданків)
РІЗНИЦЯ cтепенів БУДЬ-ЯКОЇ КІЛЬКОСТІ ПАРНИХ ЧИСЕЛ ЗАВЖДИ ПАРНА.
(2∙n -1)z + (2∙k-1)n + … + (2∙f-1)m + (2∙q-1)w = 2∙p
                                      (парна кількість  непарних доданків)
СУМА cтепенів ПАРНОЇ КІЛЬКОСТІ НЕПАРНИХ ЧИСЕЛ ЗАВЖДИ ПАРНА.
(2∙n -1)z + (2∙k-1)n + … + (2∙f-1)m + (2∙q-1)w = 2∙p - 1
                               (непарна кількість непарних доданків)
СУМА cтепенів НЕПАРНОЇ КІЛЬКОСТІ НЕПАРНИХ ЧИСЕЛ ЗАВЖДИ НЕПАРНА.

Звертаємо увагу ще на  одну цікаву і не зовсім  очевидну властивість.
Степінь натурального числа (більша першої степені) не може бути записана у вигляді 4m + 2. Варто запам’ятати, що  nk ¹ 4∙m + 2, де натуральне k більше 1.

Зокрема, можна довести такі властивості.
Довільна степінь непарного числа вигляду 4∙q +1 подається у вигляді 4∙p + 1:
(4∙q + 1)n = 4∙p + 1.
Або цю рівність можна розуміти ще отак: будь-яка степінь непарного числа вигляду 4∙q +1 при діленні на 4 дає остачу 1.
Приклади: (4∙2 +1)2 = 4∙20 + 1,    (4∙2 +1)3 = 4∙182 +1,    (4∙2 +1)4 = 4∙1640 +1.   
Непарна степінь непарного числа вигляду 4∙q + 3 подається у вигляді 4∙p + 3:
(4∙q + 3 )2n-1 = 4∙p + 3.
Або цю рівність можна розуміти ще отак: будь-яка непарна степінь непарного числа вигляду 4∙q +3 при діленні на 4 дає остачу 3.
Приклади: (4∙2 +3)3 = 4∙332 + 3.
Парна степінь непарного числа вигляду 4∙q + 3 подається у вигляді 4∙p + 1:
(4∙q + 3 )2n = 4∙p + 1.
Або цю рівність можна розуміти ще отак: будь-яка парна степінь непарного числа вигляду 4∙q +3 при діленні на 4 дає остачу 1.
Приклади: (4∙2 + 3)2 = 4∙30 + 1,    (4∙2 +3)4 = 14640 +1.

Зразки задач на парність та непарність.

1. На чудо-дереві ростуть банани і ананаси. За один раз дозволяється зірвати з неї два плоди. Якщо зірвати два банани або два ананаси, то виросте ще один ананас, а якщо зірвати один банан і один ананас, то виросте один банан. У результаті залишився один  плід. Який це плід, якщо відомо, скільки бананів і ананасів росло спочатку?
Розв’язання. Парність числа бананів не міняється, тому, якщо число бананів було парним, то плід, що залишився, –  ананас, якщо число бананів було непарним, то – банан.
2. У одній клітці квадратної таблиці 4x4  стоїть знак мінус, а в інших стоять плюси. Дозволяється одночасно міняти знак у всіх клітках, розташованих в одному рядку або в одному стовпці. Доведіть, що, скільки б ми не проводили таких змін знаку, нам не вдасться отримати таблицю з одних плюсів.
Розв’язання. Замінимо знак «+» на число 1 і знак «—» на число  – 1. Відмітимо, що добуток всіх чисел в таблиці не міняється при зміні знаку у всіх чисел стовпця або рядка. У початковому положенні цей добуток рівний - 1, а в таблиці з одних плюсів добуток рівний  +1, чим і доведена неможливість переходу.
3. Одним ударом Шварцнегер може розбити будь-який шматок бетону на 3 частини. Скільки ударів йому знадобитися, щоб розбити бетонну плиту  а) на 5 частин;  б) на 111 частин?
Розв’язання. Після кожного розбивання одного шматочка на 3 частини загальна кількість шматків збільшується на 2. Тому,  якщо виконано n розбивань, то кількість шматків має бути рівною 1+ 2n. Таким чином, 1+2n = 5, звідси n = 2, тобто два удари треба, щоб мати 5 кусків, а якщо 1+2n =111, звідси n =55, тобто 55 ударів треба, щоб мати 111 кусків.
4. Петро купив загальний зошит на 96 аркушів і пронумеру­вав всі його сторінки по порядку числами від 1 до 192. Василь вирвав з цього зошита 25 аркушів і додав всі 50 чисел, що на них були написані. Чи міг він дістати 1990?
 Відповідь: ні, не могло.  Вказівка. На кожному аркуші сума номерів сторінок непарна, а сума 25 непарних чисел непарна.
5. Добуток 22 цілих чисел дорівнює 1. Доведіть, що їх сума не дорівнює нулю.
Вказівка. Серед цих чисел – парне число "мінус одиниць", а для того, щоб сума дорівнювала нулю, їх має бути рівно 11.
6. Розмістити в квадратній таблиці 3х3,  натуральні числа від 1 до 9 так, щоб виконувалась така умови: сума  по усіх рядках, по усіх колонках, по двох діагоналях була однакова.
2
7
6

2
9
4

4
3
8

4
9
2

9
5
1

7
5
3

9
5
1

3
5
7

 4
3
8

6
1
8

2
7
6

8
1
6

















6
1
8

6
7
2

8
1
6

8
3
4

7
5
3

1
5
9

3
5
7

1
5
9

2
9
4

8
3
4

4
9
2

6
7
2

















Вказівка.  Зрозуміло, що якщо додати усі дані то отримаємо  45. Це число вказує потроєну суму кожного рядка або кожного стовпця. Тому 45 розділимо на 3, отримаємо число 15, яке називають для числового квадрату 3х3 магічна константа. Отже,  сума по горизонталям, по вертикалям, по обом діагоналям у числовому квадраті 3х3 рівна 15.  Звертаємо увагу, що 9+1 = 8+2 = 7+3 = 4 + 6 = 10, отже числа розділилися на пари, і без пари залишилося тільки число 5.  Таким чином, середнє серед цих чисел  повинно стояти в центральній клітинці. Тоді в сусідній з нею клітинках повинні стояти або пара непарних чисел, або пара парних чисел. В кутових клітинках повинні  стояти парні числа. Знайшовши один  такий набір можна отримати ще вісім  таких квадратів за допомогою повороту навколо центральної клітинки.
7. В ряд записано числа від 1 до 10. Чи можна розставити між ними знаки "+" та "–" так, щоб значення отриманого виразу дорівнювало нулю?
Відповідь: ні, не можна. І справді, сума чисел від 1 до 10 дорівнює 55, і змінюючи в неї знаки, ми змінюємо весь вираз на парне число.  Зауваження. Врахуйте, що від'ємні числа також бувають парними та непарними.
8. Чи можна скласти магічний квадрат з перших 36 простих чисел?
Відповідь: ні, не можна. Серед цих чисел одне (це 2) – парне, а інші непарні. Тому в тому рядку, де стоїть двійка, сума чисел непарна, а в інших – парна.
9. В ряд записано числа від 1 до 10. Чи можна розставити між ними знаки "+" та "–" так, щоб значення отриманого виразу дорівнювало нулю?
Відповідь: ні, не можна. І справді, сума чисел від 1 до 10 дорівнює 55, і змінюючи в неї знаки, ми змінюємо весь вираз на парне число. Зауваження. Врахуйте, що від'ємні числа також бувають парними та непарними.
10. Коник-стрибунець стрибає вздовж прямої, причому пер­шого разу він стрибнув на 1 см в якийсь бік, другого – на 2 см і так далі. Доведіть, що після 1985 стрибків він не може зупинитися там, де починав.
Вказівка. Доводиться так само, як і в задачі 20, бо сума 1 + 2 + … + 1985 непарна.
11. На дошці виписано числа 1,2,3,..., 1984, 1985. Дозволя­ється стерти з дошки будь-які два числа і замість них записати модуль їх різниці. Врешті-решт на дошці залишається одне число. Чи може воно дорівнювати нулю?
Відповідь: ні, не може. Перевірте, що при зазначених операціях парність суми всіх написаних на дошці чисел не змінюється.
12. Чи можна покрити шахматну дошку доміношками розмі­ром 1x2 так, щоб вільними залишились тільки клітинки а1 і, h8?
Відповідь: не можна. Кожна доміношка покриває одне чорне і одне біле поле, а при викиданні полів а1 і h8 чорних полів залишається на 2 менше, ніж білих.
13. До 17-цифрового числа додали число, яке записано тими ж цифрами, але в зворотному порядку. Доведіть, що хоча б одна цифра суми, що отримана, є парною.
Вказівка. Розгляньте два випадки: сума першої і останньої цифр числа менш 10, і сума першої і останньої цифр числа не менш 10. Якщо припустити, що всі цифри суми непарні, то в першому випадку не може бути жодного переносу в розрядах (що, очевидно, приводить до суперечності), а в другому випадку наявність переносу при русі справа наліво або зліва направо чергується з відсутністю переносу, внаслідок чого ми одержимо, що цифра суми в дев'ятому розряді обов'язково парна.
14. В народній дружині є 100 чоловік, і кожного вечора троє з них йдуть чергувати.   Чи може після деякого часу виявитися, що кожен чергував з кожним рівно один раз?
Відповідь: ні, не може. Бо в кожному чергуванні, в якому бере участь дана людина, вона чергує з двома іншими, отже, всіх інших можна розбити на пари. Проте 99 – непарне число.
15.  На прямій відмічено 45 точок, що лежать зовні відрізка АВ. Доведіть, що сума відстаней від цих точок до точки А не дорівнює сумі відстаней від цих точок до точки В.
Вказівка. Для будь-якої точки X, що лежить поза АВ, маємо АХ-ВХ= ±АВ. Якщо припустити, що суми відстаней рівні, то ми отримаємо, що вираз ±АВ ± АВ ± … ± АВ, в якому 45 доданків, дорівнює нулю. Але це неможливо..
16. По колу розставлено 9 чисел – 4 одиниці і 5 нулів. Кожну секунду над числами роблять таку операцію: між сусідніми числами ставлять нуль, якщо вони різні, та одиницю, якщо вони рівні. Чи можуть усі числа через деякий час стати рівними?
Вказівка. Зрозуміло, що комбінація з дев'яти одиниць раніше, ніж з дев'яти нулів, утворитися не може.   Якщо ж утворилося дев'ять нулів,   то в попередньому ході нулі і одиниці повинні були чергуватися,  не можливо, бо їх всього непарна кількість.
17. 25 хлопчиків і 25 дівчаток сидять за круглим столом. До­ведіть, що у когось із них обидва сусіди – хлопці.
Доведення. Проведемо наше доведення від супротивного. Пронумеруємо всіх, що сидять за столом, по порядку, починаючи з якогось місця Якщо на к-му місці сидить хлопчик, то ясно, що на (к - 2)-му і на (к+ 2) му місцях сидять дівчатка. Але оскільки хлопчиків і дівчаток порівно, то і для будь-якої дівчинки, що сидить на n-му місці, вірно, що на (n- 2)-му і на (n + 2)-му місцях сидять хлопчики. Якщо ми тепер розглянемо тільки тих 25 чоловік, що сидять на "парних" місцях, то одержимо, що серед них хлопчики і дівчатка чергуються, якщо обходити стіл в якомусь напрямі. Але 25 – непарне число.
18. Равлик повзе по площині із сталою швидкістю і кожні 15 хвилин повертає під прямим кутом. Доведіть, що повернутись до початкової точки він зможе лише після цілого числа годин.

Доведення. Зрозуміло, що кількість а дільниць, на яких равлик повз угору або вниз, рівна кількості дільниць, на яких він повз вправо або вліво. Залишилось тільки зауважити, що а – парне.

Коментарі

Популярні дописи з цього блогу

Властивості трапеції

Контрольна робота з теми «Подібність трикутників»

Площа чотирикутника